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Technological advancements in single-cell sequencing have provided biologists with an influx of increas-

ingly complex data, but few statistically motivated tools exist to analyze it. Recently, my work has focused

on problems inspired by the recent revolution in paired multimodal single-cell technology, such as parallel

sequencing of the transcriptome and chromatin modifications. This technology enables unprecedented stud-

ies of an organ, such as the brain, and its interconnected mechanisms at single-cell resolution. Additionally,

multimodal data allows for new data integration frameworks when paired with previously collected data of

only one modality. These potential advancements require thoughtful design of new statistical models and

computational methods. My background in dimension-reduction and networks makes me suitable for this

task – the former uncovers the subtle cross-modal axes of variation, while the latter aids in understanding

the regulatory network relating both modalities. In my previous work, I primarily developed these tools to

study brain development, but their statistical foundations broadly apply to other systems. For example, I

have ongoing collaborations in immunology and oncology, demonstrating my interest in applying my spe-

cialty of data integration to several biomedical fields. Such collaborations are becoming evermore crucial, as

biomedical research is becoming increasingly interdisciplinary and single-cell sequencing enables studies of

more modalities (such as long-read sequencing and spatial transcriptomics). I plan to continue my existing

collaborations and initiate new ones, working on projects that overlap with my areas of statistical expertise.

Previous work
I discuss my previous projects, which were primarily motivated by advancing dimension reduction and

network tools to enable more powerful biological investigations.

Matrix factorization for over-dispersed and multimodal data. With Kathryn Roeder (CMU, Statis-

tics) and other collaborators, I have developed the exponential-family SVD (eSVD), a new dimension-

reduction tool tailored to handle sparse and over-dispersed single-cell RNA-seq (scRNA-seq) data. With

this method, I was able to uncover the previously difficult-to-study differentiation among human oligoden-

drocytes [1] (Figure 1A). My second paper extends the eSVD to test for differentially expressed genes between

Figure 1: Summary of previous work. A) eSVD’s 3-dimensional embedding of scRNA-seq data, where the color
of cells denotes different stages of oligodendrocyte development. The two estimated lineage trajectories are shown
(starting at orange, ending at blue and yellow). B) Tilted-CCA’s common embedding of RNA+ATAC single-cell
developing brain cells visualized via UMAP, where cells are colored by cell type, and the trajectories estimated using
typical lineage reconstruction methods are shown (left). The common embedding captures variation supported by
both modalities, and the developmental status of cells can be directly measured by the deviation from this manifold
alone without relying on any lineage reconstruction methods (right). C) Network among clusters of annotation
categories for non-coding mutations, where we find clusters enriched for association with ASD.
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case and control subjects from single-cell data using an empirical Bayes framework [2].

The emergence of paired multimodal single-cell sequencing, such as profiling both gene expression and

chromatin accessibility in parallel, has spurred many recent questions on how epigenetic changes coordinate

with the transcriptome during differentiation. I developed a novel multimodal dimension-reduction method

called Tilted-CCA [3] with Nancy Zhang (UPenn, Statistics) to address this. Tilted-CCA quantifies and

separates 1) axes of variation shared between RNA and ATAC (i.e., the “common manifold”) capturing

the coordination between the transcriptome and chromatin accessibility in developmental systems from 2)

the axes of variation unique to either modality. We demonstrate that the deviations from the common

manifold alone, which we coin as “asynchrony,” provide strong signals of a cell’s developmental status during

neurogenesis (Figure 1B). Our results suggest that Tilted-CCA can measure the degree of epigenetic priming,

whereby enhancer regions become accessible prior to a gene’s transcription.

Network analyses of (possibly time-varying) gene co-expression patterns. I have developed new

network methods to study the dynamics of gene coordination patterns. In my collaboration with Jing Lei

(CMU, Statistics), we posed this as an analysis of multiple networks and started with a simplistic model to

formalize the statistical foundations [4]. I then expanded our method to study the time-varying dynamics of

gene coordination throughout neurogenesis at single-cell resolution [5]. Our results provided an orthogonal

perspective of neurogenesis compared to typical studies of the dynamics in genes’ (mean) expression.

In another line of work, I have developed methods with Kathryn Roeder and collaborators to identify

mutations associated with autism spectrum disorder (ASD). This was done through a previously developed

“guilt-by-association” framework [6], whereby mutations are implicated if they are highly connected to known

autism risk mutations in the brain’s gene co-expression network. I have bolstered the statistical power of this

framework by improving the accuracy of the co-expression network (focusing on mutations in coding regions)

[7], and aggregating the mutation categories via a sparse PCA framework so the downstream analysis would

be performed on clusters of categories (focusing on non-coding mutations) [8]. In the former, I achieved this

by adaptively removing high-dimensional samples to yield a set of homogeneous samples via a two-sample

testing framework. In the latter, my aggregation led to novel discoveries of de novo mutations in promoter

regions that were associated with ASD (Figure 1C).

Advancing statistical methods tailored for studying copy number variation. I have collaborated

with Ryan Tibshirani (Berkeley, Statistics) and other statisticians to advance methods for detecting copy

number variants (CNV). We study this through the lens of changepoint detection, a broad family of commonly

used methods in this field. Specifically, we studied the theoretical requirements to ensure that all copy number

variants were found [9], as well as a multiple-testing framework to prune spurious copy number regions to

achieve valid Type-I error control [10].

Current research agenda
Paired multimodal single-cell sequencing invites new statistical questions on how to best model the diverse

landscape of cross-modal relations. Building off of the statistical insights of my previous works, my current

work strives to be among the first to investigate questions that can only be addressed with this technology.

I have prepared preliminary results for these projects as part of recent R01 NFS and NIH grant proposals.

Multimodal analysis of acquired resistance and epigenetic priming mechanisms. Cancer mortal-

ity has dropped substantially over the last decade due to early-stage diagnoses and multiple therapy options.

However, while cancer therapies kill most cancer cells, rare sub-populations of cells could survive and repop-

ulate, potentially leading to future cancer relapse. Is it possible to identify these therapy-resistant cancer

sub-populations early on? To study this, Nancy Zhang and I have developed an ongoing collaboration with

Sydney Shaffer (UPenn, Bioengineering) to study therapy resistance through the lens of epigenetic priming
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Figure 2: Summary of current work. A) Schematic of our in vitro cancer therapy experiment. B) Proposed
hypotheses of pathways responsible for stress-survival or adaptation after a cancer cell is treated. Both (A) and (B)
depict time on the x-axis. C) UMAP of the Tilted-CCA’s common embedding of the RNA and ATAC modalities,
where cells are colored by their treatment and time-point. D) Schematic of my proposed method to integrate flow
cytometry data that is newly collected from a patient with previously-sequenced CITE-seq data for better cell-type
proportion estimation.

mechanisms. Dr. Shaffer’s expertise in multimodal sequencing and lineage-barcoding protocols for clonal

tracing of cells allows me to study this problem through data that is the first of its kind.

We have sequenced a lineage-barcoded melanoma cell line for both RNA and ATAC profiles simultane-

ously according to a time-course in vitro experiment (Figure 2A). Here, cells are exposed to various therapies,

causing many cancer cells to die, and the few surviving cells repopulate and are sequenced afterward. The

multiple timepoints enable us to investigate acquired resistance mechanisms – perhaps the surviving epige-

netically primed cells were able to activate rapid stress-response pathways and gradually acquire resistance

through other slowly activated pathways (Figure 2B). My full investigation of the sequenced data (visualized

in Figure 2C) involves integrating signals across three modalities: the RNA, ATAC, and lineage barcodes,

each contributing vital information about therapy resistance. I have been developing a novel method called

Topic-model CCA to find K “topics” of cross-modality coordination. Let X(1) ∈ Rp1×n
+ and X(2) ∈ Rp2×n

+

denote the p1 genes and p2 chromatin regions measured on the same n cells, where X(`) ≥ 0 and ‖X(`)
·,i ‖1 = 1

for each cell i ∈ {1, . . . , n} and modality ` ∈ {1, 2}. Topic-model CCA then solves{
Â, B̂

}
= argmax

A∈RK×p1
+

B∈RK×p2
+

[
trace

(
AX(1)(X(2))>B>

)]
, s.t. max

{∥∥AX
(1)
·,i ‖1,

∥∥BX
(2)
·,i ‖1

}
≤ 1 ∀i ∈ {1, . . . , n}.

(1)
Here, the objective function is the same as in CCA. As with any non-negative factorization, the additional

constraints in (1) aid interpretability. The mixture of topics for each cell is encoded in X(1)A and X(2)B,

and the associated genes or chromosome regions in A and B. Topic modeling has been prevalently used in

single-cell genomics [11], but this has yet to be explored for multimodal data, even in broader fields. Recent

promising developments in both topic modeling’s computation [12] and underlying geometry [13] make it

a ripe time to study Topic-model CCA. I hope our results will be foundational for understanding therapy
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resistance, and my method can aid future studies of cross-modal coordination in systems where lineage

barcoding is not possible.

Improving flow cytometry’s cell-type proportion estimates by leveraging CITE-seq data. Im-

munology primarily uses flow cytometry (FC) to measure the phenotypes of millions of cells relatively quickly,

but it is limited in phenotypic resolution due to the size of the protein panel (i.e., the number of detectable

proteins in one run, typically 30). Furthermore, the selection of which proteins to include is primarily

based on historical data. In contrast, emerging CITE-seq technology (sequencing single cell’s transcriptome

and surface antibody markers in parallel) can measure 200+ proteins alongside 10,000+ genes, allowing for

high-quality cell-type labels. However, it is hindered by its high cost and low throughput compared to FC.

Given each technology’s strengths, after an immunologist collects FC data of a new patient, can we design a

computational method to better estimate the proportion of granular immune subtypes by leveraging existing

CITE-seq data? Furthermore, can we use the full transcriptome and antibodies measured by CITE-seq to

guide FC panel design so that immunologists can maximally utilize the limited number of proteins measur-

able at once? Nancy Zhang and I have initiated collaborations with Andy Minn (UPenn, Oncology) and

John Wherry (UPenn, Immunology) to address these pressing questions. My proposed methodology can

immediately improve their current research on adaptive resistance to immunotherapy and T-cell exhaustion.

This project involves two tasks (Figure 2D): first, to design M (e.g. M = 3) sets {Am}Mm=1 of 30 proteins

each based on the existing CITE-seq data. For a new patient, the clinician collects multiple new FC datasets

using the prescribed sets A1, . . . ,AM . This leads to the second task, to deconvolve the multiple FC datasets

using the CITE-seq data to estimate the cell-type proportions. To solve the second task, I have developed a

deconvolution method based on modeling the data as mixtures of Gaussians. This statistical model enables

estimation of the cell-type proportions by minimizing the Wasserstein distance between mixtures of Gaussians

[14]. Certainly, understanding when my deconvolution accurately estimates cell-type proportions impacts

my design of {Am}Mm=1 in the first task. My initial experiments demonstrate this can be recast as an analysis

of dependencies among proteins – the proteins within each set Am should statistically dependent but not

linearly correlated. In contrast, the proteins between two different sets Am and A′m should be be statistically

independent. Altogether, this work will pioneer widely-used methods for clinicians that marry multimodal

data with other technologies with markedly different strengths.

Future research agenda
Over the next few years, I seek to develop new data integration tools for multimodal data to address

pressing biological questions. As biomedical technologies improve, there will be new modeling and estimation

challenges. This will encourage new theoretical questions for unforeseen statistical models. I plan to continue

my existing collaboration and initiate new ones, especially with wet-lab biologists and clinicians working in

areas that lack targeted statistical tools. As a concrete example, I describe how my statistical expertise can

advance the field of developmental biology and cancer research, but my expertise and intended endeavors

are not limited to studying these fields.

Investigating cellular differentiation and response through genetic variation and emerging as-

says. Cell differentiation is regulated in many other ways aside from epigenetics. For example, radial glia

cells play an essential role in neuronal migration during brain development [15], which can be studied in

more depth via emerging spatial transcriptomic assays. On the other hand, thanks to emerging long-read

sequencing assays, differential isoform expression tests have demonstrated how alternative splicing regu-

lates cell development [16]. However, can new hierarchical matrix factorization models accounting for the

combinatorial nature of isoforms uncover how genes’ isoform diversity (or lack of) regulates differentiation?

Additionally, how do we pair our increasing understanding of cell differentiation with genetic variation?

Recent work characterizing cell-type specific eQTLs psychiatric and neurological disorders [17] suggest that
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SNPs bias how cells commit to particular lineages. Promising frameworks such as dynamic eQTLs [18]

have suggested that genetic impact on the transcriptome is not static. These ideas are particularly suitable

when studying the neurological impact of stress from a genomic and genetic perspective. Does acute and

frequent stress have a genomic impact, and can it disrupt safeguarding mechanisms responsible for restoring

normalcy? Recent work on mouse models has demonstrated that frequent stress has temporal effects on

the transcriptome [19]. Can this be attributed to epigenetic or genetic variation more broadly? All-in-all,

my current work on epigenetic priming will be informative when developing frameworks to integrate across

broader biological data.

Formalizing biological mechanisms, illustrated with branching development of regulatory net-

works. Genomic research has posited many intricate biological concepts that remain statistically elusive.

One example is fate commitment : what is the last predictable cell-state prior to a cell committing to a

specific developmental lineage (i.e., the branchpoint)? Our understanding of fate commitment has a biolog-

ical impact, as it would suggest how future therapy treatments can control cellular differentiation. While

current genomic tools address fate commitment based on cells’ mean gene expressions [20], biologists are

equally interested in studying fate commitment through cells’ epigenetic regulatory network, a critical aspect

of cellular identity [21]. This line of questioning can yield tremendous insight for developmental biology, as

lineage-tracing experiments suggest that fate commitment occurs much earlier than current transcriptomic

analyses suggest [22]. To pose our task abstractly, consider a simplistic example where we observed a col-

lection of five networks {G(t)}4t=0 that is unordered aside from a known “root” G(0) i.e., the start of a

branching developmental process (Figure 3A). Each network G(t) represents the epigenetic elements’ en-

hancement/suppression of genes for different meta-cells (here, assumed already estimated from multimodal

data). Can we estimate the branching development structure and identify when fate commitment occurs?

How do we provide a meaningful and rigorous confidence set containing the true branchpoint G(1)? Formu-

lating this idea and its more biologically-realistic variants would draw upon many modern statistical ideas,

such as graph embeddings, manifold learning, and statistical inference for networks. However, fate commit-

ment is only one of many biological concepts that could benefit from statistical formalization, and doing so

would equip biologists with tremendous insight.

Investigating causal impacts, illustrated with translational cancer research. Paired multimodal

sequencing has presented many new opportunities to bring biomedical research from “benchside to bedside”

by translating biological insight into improved clinical practice. Focusing on cancer research as one of many

concrete areas, the diverse heterogeneity of cancer within and across patients has warranted a surge of interest

in precision medicine. However, the efficacy of targeted treatments still suggests large room for improvement

[23]. Mediation analyses [24] and survival analyses [25] have been critical to explain the diverse treatment

efficacies on the patient-level via SNPs or clinical phenotypes. On the other hand, paired multimodal

sequencing has enabled high-resolution studies of how cancer cells are impacted by treatment, such as cell-

type specific epigenetic modifications [26] or clonal-specific changes in TCR diversity [27]. However, there

exist many questions that bridge these two scales: what are robust and predictive cross-modal cancer cell

signatures applicable for precision medicine? Which cellular responses yield a desirable clinical outcome?

How should we integrate multimodal sequencing alongside clinical data to study the underlying biology

dictating a treatment’s efficacy? Multimodal sequencing data would tell us a comprehensive picture of

which and how cells are impacted by treatment, and clinical data would tell us the causal effect of the cellular

changes (Figure 3B). Capitalizing on these opportunities requires substantial interdisciplinary collaborations

to develop new multimodal bioinformatics tools and new causal inference techniques. I believe my experiences

in multimodal single-cell and statistical analyses make me suitable to initiate such collaborations. The

number of opportunities in translational biology will keep increasing as single-cell technology matures, such as

in proteomics, metabolomics, and spatial transcriptomics. If successful, such counterfactual causal analyses
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Figure 3: Schematic of future ideas. A) An unordered collection of observed networks {G(t)}4t=0, given a known
root G(0). The true (unobserved) branching development we wish to estimate is G(0) → G(3) → G(1), followed by a
branch into two fates, G(2) and G(4). B) Causal impact of treatment therapies, where paired multimodal sequencing
enables investigations of different cell types’ (or cancer clones’) pre- and post-treatment multiomic landscape, and
causal inference enables investigations of how these different cellular responses caused different clinical outcomes.

would be foundational in cancer research (and more broadly, precision medicine) and open up many future

research areas.

All-in-all, I wish to address pressing biological questions by expanding upon the latest developments in

statistical methods and theory for emerging multimodal sequencing data, and I strive to collaborate with

laboratory biologists, clinicians, and statisticians alike to achieve this.
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[11] Carmen Bravo González-Blas, Liesbeth Minnoye, Dafni Papasokrati, Sara Aibar, Gert Hulselmans, Valerie

Christiaens, Kristofer Davie, Jasper Wouters, and Stein Aerts. cisTopic: cis-regulatory topic modeling on single-

cell ATAC-seq data. Nature Methods, 16(5):397–400, 2019.

[12] Peter Carbonetto, Abhishek Sarkar, Zihao Wang, and Matthew Stephens. Non-negative matrix factorization

algorithms greatly improve topic model fits. arXiv preprint arXiv:2105.13440, 2021.

[13] Maryam Abdolali and Nicolas Gillis. Simplex-structured matrix factorization: Sparsity-based identifiability and

provably correct algorithms. SIAM Journal on Mathematics of Data Science, 3(2):593–623, 2021.

[14] Julie Delon and Agnes Desolneux. A Wasserstein-type distance in the space of Gaussian mixture models. SIAM

Journal on Imaging Sciences, 13(2):936–970, 2020.

[15] Cristine R Casingal, Katherine D Descant, and ES Anton. Coordinating cerebral cortical construction and

connectivity: Unifying influence of radial progenitors. Neuron, 2022.

[16] Xiaochang Zhang, Ming Hui Chen, Xuebing Wu, Andrew Kodani, . . ., Douglas L Black, Peter V Kharchenko,

Phillip A Sharp, and Christopher A Walsh. Cell-type-specific alternative splicing governs cell fate in the devel-

oping cerebral cortex. Cell, 166(5):1147–1162, 2016.

[17] Julien Bryois, Daniela Calini, Will Macnair, Lynette Foo, . . ., Goncalo Castelo-Branco, Vilas Menon, Philip

De Jager, and Dheeraj Malhotra. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk

genes for psychiatric and neurological disorders. Nature Neuroscience, 25(8):1104–1112, 2022.

[18] Benjamin Strober, Reem Elorbany, Katherine Rhodes, Nirmal Krishnan, Karl Tayeb, Alexis Battle, and Yoav

Gilad. Dynamic genetic regulation of gene expression during cellular differentiation. Science, 364(6447):1287–

1290, 2019.

[19] Lukas M von Ziegler, Amalia Floriou-Servou, Rebecca Waag, Rebecca R Das Gupta, . . ., Ferdinand von Meyenn,

Hanns U Zeilhofer, Pierre-Luc Germain, and Johannes Bohacek. Multiomic profiling of the acute stress response

in the mouse hippocampus. Nature Communications, 13(1):1–20, 2022.

[20] Kelly Street, Davide Risso, Russell B Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom, and Sandrine

Dudoit. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics, 19(1):

1–16, 2018.
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