Package index
-
compute_snns() - Include SNN graphs to multiSVD
-
compute_synchrony() - Compute the synchrony based on Tilted-CCA
-
consensus_pca() - Computing Consensus PCA
-
construct_celltype_subsample() - Construct cell-type subsamples
-
create_SeuratDim() - Create Seurat dimension reduction objects of Tilted-CCA
-
create_multiSVD() - Create the object to initialize Tilted-CCA
-
differential_expression() - Compute the differential expression across each pair of cell types
-
.cca() - Perform CCA
-
.compute_cca_aggregate_matrix() - Helper function with the CCA function
-
.compute_distinct_score() - Compute the distinct scores
-
.compute_prob_mat() - Compute probability matrix
-
.compute_unnormalized_scores() - Using the CCA solution, compute the score matrices.
-
.generate_adjaceny_mat() - Simulate adjacency matrix
-
.project_vec2vec() - Projection of vector onto another vector
-
.tiltedCCA_common_score() - Main workhorse of dcca_factor
-
fine_tuning() - Fine tune the common tilts, one for each latent dimension
-
form_metacells() - Include meta-cell information to multiSVD
-
generate_random_orthogonal() - Generate orthogonal matrices via Gaussian noise
-
generate_sbm_orthogonal() - Generate orthogonal matrices correspond to an SBM
-
plot_alignment() - Plot alignment of variables
-
plot_cell_enrichment() - Plot cell enrichment
-
plot_clisi() - Making the plot for local enrichment
-
plot_clisi_legend() - Plot the cLISI legend
-
plot_heatmat() - Heatmap of the data
-
plot_scores() - Side-by-side plot of the canonical scores, colored by membership
-
plot_scores_heatmap.dcca() - Side-by-side plot of the canonical scores as heatmaps
-
plot_scores_heatmap.list() - Side-by-side plot of the canonical scores as heatmaps
-
plot_summary() - Plot summary of D-CCA
-
postprocess_cell_enrichment() - Computing cell enrichments (generic)
-
postprocess_cell_enrichment(<default>) - Computing cell enrichments for matrix object
-
postprocess_cell_enrichment(<multiSVD>) - Computing cell enrichments for multiSVD object
-
postprocess_depvalue() - Compute the negative log-10 p-values across all cell types
-
postprocess_marker_variables() - Find the marker genes the separate one cell type from all other cell types
-
postprocess_modality_alignment() - Compute how aligned the common component for a feature is with that feature in the original data modality
-
rotate_seurat_embeddings() - Rotate embedding in a Seurat object
-
tiltedCCA() - Tilted-CCA Factorization
-
tiltedCCA_decomposition() - Tilted-CCA Decomposition