Skip to contents

All functions

compute_snns()
Include SNN graphs to multiSVD
consensus_pca()
Computing Consensus PCA
construct_celltype_subsample()
Construct cell-type subsamples
create_SeuratDim()
Create Seurat dimension reduction objects of Tilted-CCA
create_multiSVD()
Create the object to initialize Tilted-CCA
differential_expression()
Compute the differential expression across each pair of cell types
.cca()
Perform CCA
.compute_cca_aggregate_matrix()
Helper function with the CCA function
.compute_distinct_score()
Compute the distinct scores
.compute_prob_mat()
Compute probability matrix
.compute_unnormalized_scores()
Using the CCA solution, compute the score matrices.
.generate_adjaceny_mat()
Simulate adjacency matrix
.project_vec2vec()
Projection of vector onto another vector
.tiltedCCA_common_score()
Main workhorse of dcca_factor
fine_tuning()
Fine tune the common tilts, one for each latent dimension
form_metacells()
Include meta-cell information to multiSVD
generate_random_orthogonal()
Generate orthogonal matrices via Gaussian noise
generate_sbm_orthogonal()
Generate orthogonal matrices correspond to an SBM
plot_alignment()
Plot alignment of variables
plot_cell_enrichment()
Plot cell enrichment
plot_clisi()
Making the plot for local enrichment
plot_clisi_legend()
Plot the cLISI legend
plot_heatmat()
Heatmap of the data
plot_scores()
Side-by-side plot of the canonical scores, colored by membership
plot_scores_heatmap.dcca()
Side-by-side plot of the canonical scores as heatmaps
plot_scores_heatmap.list()
Side-by-side plot of the canonical scores as heatmaps
plot_summary()
Plot summary of D-CCA
postprocess_cell_enrichment()
Computing cell enrichments (generic)
postprocess_cell_enrichment(<default>)
Computing cell enrichments for matrix object
postprocess_cell_enrichment(<multiSVD>)
Computing cell enrichments for multiSVD object
postprocess_depvalue()
Compute the negative log-10 p-values across all cell types
postprocess_marker_variables()
Find the marker genes the separate one cell type from all other cell types
postprocess_modality_alignment()
Compute how aligned the common component for a feature is with that feature in the original data modality
rotate_seurat_embeddings()
Rotate embedding in a Seurat object
tiltedCCA()
Tilted-CCA Factorization
tiltedCCA_decomposition()
Tilted-CCA Decomposition