Function reference
-
compute_snns()
- Include SNN graphs to multiSVD
-
consensus_pca()
- Computing Consensus PCA
-
construct_celltype_subsample()
- Construct cell-type subsamples
-
create_SeuratDim()
- Create Seurat dimension reduction objects of Tilted-CCA
-
create_multiSVD()
- Create the object to initialize Tilted-CCA
-
differential_expression()
- Compute the differential expression across each pair of cell types
-
.cca()
- Perform CCA
-
.compute_cca_aggregate_matrix()
- Helper function with the CCA function
-
.compute_distinct_score()
- Compute the distinct scores
-
.compute_prob_mat()
- Compute probability matrix
-
.compute_unnormalized_scores()
- Using the CCA solution, compute the score matrices.
-
.generate_adjaceny_mat()
- Simulate adjacency matrix
-
.project_vec2vec()
- Projection of vector onto another vector
-
.tiltedCCA_common_score()
- Main workhorse of dcca_factor
-
fine_tuning()
- Fine tune the common tilts, one for each latent dimension
-
form_metacells()
- Include meta-cell information to multiSVD
-
generate_random_orthogonal()
- Generate orthogonal matrices via Gaussian noise
-
generate_sbm_orthogonal()
- Generate orthogonal matrices correspond to an SBM
-
plot_alignment()
- Plot alignment of variables
-
plot_cell_enrichment()
- Plot cell enrichment
-
plot_clisi()
- Making the plot for local enrichment
-
plot_clisi_legend()
- Plot the cLISI legend
-
plot_heatmat()
- Heatmap of the data
-
plot_scores()
- Side-by-side plot of the canonical scores, colored by membership
-
plot_scores_heatmap.dcca()
- Side-by-side plot of the canonical scores as heatmaps
-
plot_scores_heatmap.list()
- Side-by-side plot of the canonical scores as heatmaps
-
plot_summary()
- Plot summary of D-CCA
-
postprocess_cell_enrichment()
- Computing cell enrichments (generic)
-
postprocess_cell_enrichment(<default>)
- Computing cell enrichments for matrix object
-
postprocess_cell_enrichment(<multiSVD>)
- Computing cell enrichments for multiSVD object
-
postprocess_depvalue()
- Compute the negative log-10 p-values across all cell types
-
postprocess_marker_variables()
- Find the marker genes the separate one cell type from all other cell types
-
postprocess_modality_alignment()
- Compute how aligned the common component for a feature is with that feature in the original data modality
-
rotate_seurat_embeddings()
- Rotate embedding in a Seurat object
-
tiltedCCA()
- Tilted-CCA Factorization
-
tiltedCCA_decomposition()
- Tilted-CCA Decomposition